Controlling edge morphology in graphene layers using electron irradiation: from sharp atomic edges to coalesced layers forming loops.

نویسندگان

  • E Cruz-Silva
  • A R Botello-Méndez
  • Z M Barnett
  • X Jia
  • M S Dresselhaus
  • H Terrones
  • M Terrones
  • B G Sumpter
  • V Meunier
چکیده

Recent experimental reports indicate that Joule heating can atomically sharpen the edges of chemical vapor deposition grown graphitic nanoribbons. The absence or presence of loops between adjacent layers in the annealed materials is the topic of a growing debate that this Letter aims to put to rest. We offer a rationale explaining why loops do form if Joule heating is used alone, and why adjacent nanoribbon layers do not coalesce when Joule heating is applied after high-energy electrons first irradiate the sample. Our work, based on large-scale quantum molecular dynamics and electronic-transport calculations, shows that vacancies on adjacent graphene sheets, created by electron irradiation, inhibit the formation of edge loops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites

Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...

متن کامل

Nanostructuring graphene by dense electronic excitation.

The ability to manufacture tailored graphene nanostructures is a key factor to fully exploit its enormous technological potential. We have investigated nanostructures created in graphene by swift heavy ion induced folding. For our experiments, single layers of graphene exfoliated on various substrates and freestanding graphene have been irradiated and analyzed by atomic force and high resolutio...

متن کامل

An In-Situ TEM Study on the Formation of Gold Carbide

In this study, a freestanding graphene membrane sheet serves as a quasi transparent substrate for aberration-corrected high-resolution transmission electron microscopy, as an insitu heater, and as carbon supplier. The sheet has been previously decorated with gold nanoislands. During electron irradiation at 80 kV and at temperatures of approximately 1000K, the accumulation of gold atoms has been...

متن کامل

Lateral heterostructures of two-dimensional materials by electron-beam induced stitching

We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based on electron beam induced stitching. Monolayers of graphene and MoS2 were grown by chemical vapor deposition (CVD) on copper and SiO2 substrates, respectively, transferred onto gold/mica substrates and patterned by elect...

متن کامل

Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM

In-plane and out-of-plane arrangements of carbon atoms in graphene layers play critical roles in the fundamental physics and practical applications of these novel two-dimensional materials. Here, we report initial results on the edge/crystal orientations and stacking orders of bi- and tri-layer graphene (BLG and TLG) from Raman spectroscopy and transmission electron microscopy (TEM) experiments...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 105 4  شماره 

صفحات  -

تاریخ انتشار 2010